Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.

نویسندگان

  • J C Boyington
  • V N Gladyshev
  • S V Khangulov
  • T C Stadtman
  • P D Sun
چکیده

Formate dehydrogenase H from Escherichia coli contains selenocysteine (SeCys), molybdenum, two molybdopterin guanine dinucleotide (MGD) cofactors, and an Fe4S4 cluster at the active site and catalyzes the two-electron oxidation of formate to carbon dioxide. The crystal structures of the oxidized [Mo(VI), Fe4S4(ox)] form of formate dehydrogenase H (with and without bound inhibitor) and the reduced [Mo(IV), Fe4S4(red)] form have been determined, revealing a four-domain alphabeta structure with the molybdenum directly coordinated to selenium and both MGD cofactors. These structures suggest a reaction mechanism that directly involves SeCys140 and His141 in proton abstraction and the molybdenum, molybdopterin, Lys44, and the Fe4S4 cluster in electron transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.

Formate dehydrogenase H from Escherichia coli contains multiple redox centers, which include a molybdopterin cofactor, an iron-sulfur center, and a selenocysteine residue (SeCys-140 in the polypeptide chain) that is essential for catalytic activity. Here we show that addition of formate to the native enzyme induces a signal typical of Mo(V) species. This signal is detected by electron paramagne...

متن کامل

Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase

Molybdenum-containing formate dehydrogenase H from Escherichia coli (EcFDH-H) is a powerful model system for studies of the reversible reduction of CO2 to formate. However, the mechanism of FDH catalysis is currently under debate, and whether the primary Mo coordination sphere remains saturated or one of the ligands dissociates to allow direct substrate binding during turnover is disputed. Here...

متن کامل

The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucl...

متن کامل

Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution.

BACKGROUND All mononuclear molybdoenzymes bind molybdenum in a complex with an organic cofactor termed molybdopterin (MPT). In many bacteria, including Escherichia coli, molybdopterin can be further modified by attachment of a GMP group to the terminal phosphate of molybdopterin to form molybdopterin guanine dinucleotide (MGD). This modification reaction is required for the functioning of many ...

متن کامل

The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H.

Three NifS-like proteins, IscS, CSD, and CsdB, from Escherichia coli catalyze the removal of sulfur and selenium from L-cysteine and L-selenocysteine, respectively, to form L-alanine. These enzymes are proposed to function as sulfur-delivery proteins for iron-sulfur cluster, thiamin, 4-thiouridine, biotin, and molybdopterin. Recently, it was reported that selenium mobilized from free selenocyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 275 5304  شماره 

صفحات  -

تاریخ انتشار 1997